

# Hubble Space Telescope Multi Layer Insulation Failure Review Board Results

## 1998 SEE Flight Experiments Workshop June 23 - 25, 1998

**Jacqueline Townsend** 

Patricia Hansen, FRB Chair Mechanical Systems Center NASA, Goddard Space Flight Center



### Overview

- Hubble Space Telescope Observations
- Damage Mechanism Investigation
  - Retrieved Specimen Failure Analysis
  - Simulated Environmental Exposures
- Replacement Material Selection
- Conclusions



# Acknowledgments

- HST MLI Failure Review Board
  - NASA- GSFC, JPL, LeRC
  - Lockheed-Martin, Swales Aerospace
- Test Team
  - NASA GSFC, LeRC, MSFC
  - AZ Technology, Boeing Aerospace, Evans East,
     Jackson and Tull, Lockheed-Martin, Swales
     Aerospace, Unisys, University of Akron



### **HST Observations**

- Images
  - SM1 Observations
  - SM2
    - Observations
    - Damage Map
  - SM2 Aft Bulkhead Discoloration
  - Retrieved Specimens
- Orbital Environment



# Hubble Space Telescope

- Deployed April 25, 1990
  - Altitude -- 598 km (320 nmi)
  - 28.5° orbit inclination
- First Servicing Mission
  - December 1993 (3.6 years)
- Second Servicing Mission
  - February 1997 (6.8 years)



# SM2 Light Shield (LS) Specimen





#### **HST Observations**

- Multi Layer Insulation Cracks
  - SM1: obvious damage only on anti-solar side
  - SM2:
    - more than 100 obvious cracks
    - severe cracking on both solar and anit-solar side
    - some cracks curled
- Silver Teflon Tape on radiator surfaces showed dark streaks



### **Environmental Factors**

- Radiation
  - Solar Exposure: UV, VUV, Soft X-rays (solar flares)
  - Trapped electrons and protons
- Atomic Oxygen: sweeping ram
- Thermal Cycling
  - Solar facing: -100 to +50 °C
  - Anti-solar side: -200 to -10 °C
- Synergistic Effects



## **HST Orbital Environment**

| Sample       | Equiv.<br>Solar hr<br>(ESH) | X-ray<br>fluence<br>(J/m²) | Trapped electrons and proton fluence > 40 keV (#/cm²)               | Plasma<br>fluence<br>(#/cm²)                                        | Atomic<br>Oxygen<br>(atoms/cm <sup>2</sup> ) |
|--------------|-----------------------------|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|
| SM1<br>MSS-A | 11,339                      | 0.5-4Å: 4.9<br>1-8Å: 74    | electrons: 1.39 x 10 <sup>13</sup> protons: 7.96 x 10 <sup>19</sup> | electrons: 3.18 x 10 <sup>19</sup> protons: 1.11 x 10 <sup>19</sup> | $1.56 \times 10^{20}$                        |
| SM2<br>MLI   | 33,638                      | 0.5-4Å: 16<br>1-8Å: 252.4  | electrons: 2.14 x 10 <sup>13</sup>                                  | electrons: 4.66 x 10 <sup>19</sup>                                  | $1.64 \times 10^{20}$                        |
| SM2<br>CVC   | 19,308                      | 0.5-4Å: 6.1<br>1-8Å: 96.9  | protons: 1.83 x 10 <sup>10</sup>                                    | protons: 1.63 x 10 <sup>19</sup>                                    |                                              |



# Damage Mechanism Investigation

- Failure Analysis
- Simulated Exposures



# MLI Outer Layer Cracking (SM2)

Smooth Fracture (slow crack growth): created and propagated in space



Image: Len Wang, Unisys/GSFC Materials Engineering Branch



# Vapor Deposited Metal Cracking

#### Mud Tiling

- > Homogeneous (random direction changes)
- > Tensile cracks and buckling of metal
- $> \sim 10 \ \mu m \ x \ 10 \ \mu m \ up \ to \ 40 \ \mu m \ x \ 40 \ \mu m$

Mud cracking/buckling of the VDA (LS SM2)



Image: Len Wang, Unisys/GSFC Materials Engineering Branch

# GSFC Materials Engineering Branch

# Failure Analysis Summary

- MLI Outer Layer Cracking: Slow Crack Growth
  - Slow propagation; low stress; environmental factor
- Vapor Deposited Metal Cracking
  - Unsupported MLI: Thermal cycling; small α effect
  - Bonded CVC: Application; large α effect from adhesive
- FEP Damage: chain scission; increased crystallinity
  - Bulk embrittlement
    - Elongation: Pristine =  $\sim 350\%$ ; SM1 =  $\sim 150\%$ ; SM2 = 0%
  - Caused most of  $\alpha$  increase by SM2  $\alpha$ 
    - Absorptance: Pristine = 0.125; SM1 = 0.17-0.26; SM2 = 0.196
  - No crystallinity increase in SM1 specimens



# Simulated Environmental Exposures

- Synchrotron Soft X-ray and VUV Exposure Brookhaven National Laboratories
  - High flux, narrow energy bands
  - 69 to 1900 eV
- Electron and Proton Exposure and Rapid Thermal Cycling
  - HST mission-equivalent fluences of
     0.5 MeV electrons and 1 MeV protons
  - Thermal cycled: -100 to +60 °C; 15 second cycles



# VUV and Soft X-ray Exposure

- Damage at very high fluences
  - 137 times EOL fluence at 1489 eV => 83% loss in elongation
- Negligible damage at HST fluences
- VUV and soft x-ray (69 to 1900 eV) alone insufficient to cause observed damage to HST



# Electron and Proton Exposure and Rapid Thermal Cycling

- Damage not as severe as HST at SM2-equivalent exposure
- HST EOL (20 year) exposure yielded 46% elongation loss

Initial elongation: ~356 %

After radiation: ~290 %

After added thermal cycling: ~190 %

#### • Conclusions:

- Electrons and protons reduced elongation and ultimate strength
- Additional thermal cycling reduced elongation and ultimate strength

# 5 mil FEP/VDA: Electron/Proton and Thermal Cycling Elongation at Failure vs. Exposure Duration



# GSFC Materials Engineering Branch

## Damage Mechanism Summary

#### • HST Observations:

- SM1: Limited, localized cracking of 5 mil FEP on both solar and anti-solar sides
- SM2: Significant cracking on both sides

#### Failure Analysis of Returned Specimen

- Cracking is a form of slow crack growth
- FEP damage: chain scission, increased crystallinity

#### Environmental Exposures

- HST fluence of VUV/ soft x-ray alone insufficient
- HST fluence electron and proton + thermal cycling significantly reduced elongation



# Damage Mechanism

- Cracking Mechanism:
  - Thermal cycling with deep-layer damage from electrons and protons
  - Damage increases with combined total dose of UV, X-rays, electrons, protons and thermal cycling
- Solar absorptance affected by FEP degradation and VDS flaws (significant increase from adhesives)



# Replacement Material Selection

- Candidate Replacement Materials
- Test Environments
- Selection



# Candidate Replacement Materials

- Select replacement material with 10 year life
  - FRB prioritized 9 performance criteria:
    - solar absorptance/emittance requirements
      - at 10 years α/ε ≤ 0.28
    - maintain mechanical integrity
  - FRB rated each suggested material on anticipated performance in established criteria
  - 17 suggested materials pared down to six candidates



# Candidate Replacement Materials

10 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP/VDS/Inconel/adh/fiberglass scrim/adh/2 mil Kapton

10 mil FEP/VDA/adhesive/Nomex scrim

5 mil FEP/VDA/adhesive/fiberglass scrim/adhesive/2 mil Kapton

5 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP /VDA/adhesive/Nomex scrim

OCLI multi-layer oxide UV blocker/2 mil white Tedlar

5 mil Teflon FEP/VDA (the current material)

SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/Ag/Al<sub>2</sub>O<sub>3</sub>/4 mil stainless steel

Proprietary Teflon FEP/AZ93 White Paint/Kapton



### **Test Environments**

- Sequential exposure to combinations of
  - electrons/protons
  - thermal cycling
  - ultraviolet radiation

- atomic oxygen
- soft x-rays
- Four candidate material sets exposed
  - Dose/fluence based on 10 year HST environment
- Two sets of current material exposed
  - Dose/fluence based on 6.8 year HST environment
  - Calibration/Control



## **Test Environments**

|     | First Electron Exposures |          |         | Proton    | roton  |         | Thermal Cycles |        |        |       |
|-----|--------------------------|----------|---------|-----------|--------|---------|----------------|--------|--------|-------|
| Set | Exposure                 | Duration | Type    | Energy    | Energy | AO      | X-ray          | #      | Load   | UV    |
|     | Location                 | (years)  |         | (keV)     | (keV)  | (years) | (years)        |        |        | (ESH) |
|     |                          |          |         |           |        |         |                |        |        |       |
| M1  | MSFC                     | 10       | Dose    | 50 to 500 | 700    | 10      | -              | 20,000 | taped  | -     |
| M2  | MSFC                     | 10       | Dose    | 50 to 500 | 700    | -       | 10             | 3,200  | taped  | 505   |
| M3  | MSFC                     | 6.8      | Dose    | 50 to 500 | 700    | 6.8     | -              | 20,000 | taped  | -     |
|     |                          |          |         |           |        |         |                |        |        |       |
| B1  | Boeing                   | 10       | Fluence | 40        | 40     | -       | 10             | 1,000  | spring | -     |
| B2  | Boeing                   | 10       | Fluence | 40        | 40     | -       | -              | -      | -      | -     |
| В3  | Boeing                   | 6.8      | Fluence | 40        | 40     | -       | -              | -      | -      | -     |
|     |                          |          |         |           |        |         |                |        |        |       |
| L1  | LeRC                     | -        | -       | -         | -      | -       | -              | >1500  | mass   | _     |
| G1  | GSFC                     | -        | -       | -         | -      | -       | -              | -      | -      | 374   |

MSFC LeRC GSFC



## Selection

- Candidate performance documented following exposures
  - Absorptance
  - Crack Type/Extent
- Candidates scored and ranked according to original performance criteria
  - Included FRB member scores for each criterion
  - Score for given criterion weighted



# Final Ranking of Candidates

#### 5 mil FEP /VDA/adhesive/Nomex scrim

10 mil FEP/VDA/adhesive/Nomex scrim

5 mil FEP/VDA (the current material)

10 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP/VDS/Inconel/adhesive/Nomex scrim

5 mil FEP/VDS/Inconel/adh/fiberglass scrim/adh/2 mil Kapton

OCLI multi-layer oxide UV blocker/2 mil white Tedlar

5 mil FEP/VDA/adhesive/fiberglass scrim/adhesive/2 mil Kapton

Two ruled out prior to ranking for other considerations



# Replacement Material Summary

- Selected Material
  - 5 mil FEP/VDA/adhesive/Nomex scrim
- Simulated Environments and Evaluation
  - Test plan produced cracks similar to orbit
  - Results vendor specific

# GSFC Materials Engineering Branch

## **Conclusions**

- Minor damage to unsupported 5 mil FEP at 3.6 years
- Damage Mechanism
  - Unsupported films: slow crack growth
    - electrons/protons with thermal cycling; UV, VUV, X-rays add
  - Tapes: application techniques
    - metal backing cracked; UV darkened adhesive
- Replacement Material
  - No FEP alternatives; need low  $\alpha$ , radiation resistant thin films
  - Need UV stable adhesives
- Effects of LEO radiation on outer layer materials must be considered in design

#### References

- 1) P.A. Hansen, J.A. Townsend, Y. Yoshikawa, J.D. Castro, J.J. Triolo, and W.C. Peters, "Degradation of Hubble Space Telescope Metallized Teflon FEP Thermal Control Materials", Science of Advanced Materials and Process Engineering Series, 43, 000 (1998).
- J. A. Townsend, P.A. Hansen, J.A. Dever, J.J. Triolo, "Analysis of Retrieved Hubble Space Telescope Thermal Control Materials", Science of Advanced Materials and Process Engineering Series, 43, 000 (1998).
- 3) J. A. Townsend, P.A. Hansen, M.W. McClendon, J.A. Dever, J.J. Triolo, "Evaluation and Selection of Replacement Thermal Control Materials for the Hubble Space Telescope", Science of Advanced Materials and Process Engineering Series, 43, 000 (1998).
- 4) L. Wang, J.A. Townsend, and M. Viens, "Fractography of MLI Teflon" FEP from the HST Second Servicing Mission", Science of Advanced Materials and Process Engineering Series, 43, 000 (1998).
- 5) J.A. Dever, J. A. Townsend, J.R. Gaier and A.I. Jalics, "Synchrotron VUV and Soft X-Ray Radiation Effects on aluminized Teflon FEP", Science of Advanced Materials and Process Engineering Series, 43, 000 (1998).
- 6) C. He and J.A. Townsend, "Solar Absorptance of the Teflon FEP Samples Returned from the HST Servicing Missions", Science of Advanced Materials and Process Engineering Series, 43, 000 (1998).
- 7) J.A. Dever, K.K. deGroh, J.A. Townsend, L.L. Wang, "Mechanical Properties Degradation of Teflon FEP Returned from the Hubble Space Telescope", NASA/TM-1998-206618
- 8) B. Banks, T. Stueber, S. Rutledge, D. Jaworske, W. Peters, "Thermal Cycling-Caused Degradation of Hubble Space Telescope Aluminized FEP Thermal Insulation," AIAA 98-0896, Presented at the 36th Aerospace Sciences Meeting & Exhibit, Reno NV, January 12-15, 1998.
- 9) T. Zuby, K. DeGroh, and D. Smith; "Degradation of FEP Thermal Control Materials Returned from the Hubble Space Telescope," NASA Technical Memorandum 104627, December 1995.
- 10) A. Milintchouk, M. Van Eesbeek, F. Levadou and T. Harper, "Influence of X-ray Solar Flare Radiation on Degradation of Teflon in Space" Journal of Spacecraft and Rockets, Vol. 34, No. 4, July-August, 1997.

#### For more information:

- Patti Hansen; 301-286-0564; patricia.a.hansen.2@gsfc.nasa.gov
- Jackie Townsend; 301-286-6685; jacqueline.a.townsend.1@gsfc.nasa.gov

#### Appendix: Candidate Replacement Material Performance



#### Solar Absorptance measured after each exposure

- Exposure Correlation:
  - Largest change following thermal cycling of electron/proton/AO exposed specimens
- Candidate Ranking:
  - Specimens with VDS had greatest increase

#### Crack Propagation Types

- Cracks comparable to orbital damage produced (slow crack growth 1)
- Other types of cracking observed:
  - Tensile overload, slow crack growth 2, combination
- Exposure Correlation:
  - Cracks propagated only during thermal cycling of exposed specimens
  - Cracks most like HST following 20,000 thermal cycles of electron/proton/AO exposed specimens

#### Crack Extent

- Mechanical integrity: Crack Extent
  - Crack Length not used because of scrim
- Crack Extent Characterization
  - Number of scrim fibers passed
  - Delamination
  - Length
- Candidate Ranking
  - Fiberglass scrim candidates poor
  - 10 mil candidates better than 5 mil